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Abstract
Picard–Vessiot theorem (1910) provides a necessary and sufficient condition for solv-
ability of linear differential equations of order n by quadratures in terms of its Galois
group. It is based on the differential Galois theory and is rather involved. Liouville
in 1839 found an elementary criterium for such solvability for n = 2. Ritt simplified
Liouville’s theorem (1948). In 1973 Rosenlicht proved a similar criterium for arbitrary
n. Rosenlicht work relies on the valuation theory and is not elementary. In these notes
we show that the elementary Liouville–Ritt method based on developing solutions in
Puiseux series as functions of a parameter works smoothly for arbitrary n and proves
the same criterium.

Keywords Linear differential equation · Solvability by quadratures

1 Introduction

Consider a homogeneous linear differential equation

y(n) + a1y
(n−1) + · · · + an y = 0 (1)

whose coefficients ai belong to a differential field K .

Theorem 1 If the Eq. (1) has a non zero solution representable by generalized quadra-
tures over K then it necessarily has a solution of the form y1 = exp z where z′ is
algebraic over K .1

1 In the Sect. 2.7 we provide a generalization of Theorem 1 for nonlinear homogeneous equations.
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194 A. Khovanskii

The following lemma is obvious.

Lemma 2 Assume that the Eq. (1) has a non zero solution y1 representable by gener-
alized quadratures over K . Then the Eq. (1) can be solved by generalized quadratures
over K if and only if the linear differential equation of order (n − 1) over the differ-
ential field K (y1) obtained from (1) by the reduction of order using the solution y1 is
solvable by generalized quadratures over K (y1).

Indeed on one hand each solution of the equation obtained from (1) by the reduction
of order using y1 can be expressed in the form (y/y1)′ where y is a solution of (1). On
the other hand any solution y of the equation (y/y1)′ = u, where u is represented by
generalized quadratures over K (y1), is representable by generalized quadratures over
K , assuming that y1 representable by generalized quadratures over K .

Thus Theorem 1 provides the following criterium for solvability of the Eq. (1) by
generalized quadratures.

Theorem 3 The Eq. (1) is solvable by generalized quadratures over K if and only if
the following conditions hold:

(1) the Eq. (1) has a solution y1 of the form y1 = exp z where z′ = f is algebraic
over K ,

(2) the linear differential equation of order (n − 1) over K (y1) obtained from (1) by
the reduction of order using the solution y1 is solvable by generalized quadratures
over K (y1).

The standard proof (Picard and Vessiot, 1910) of Theorem 1 uses the differential
Galois theory and is rather involved (see van der Put and Singer 2003).2

In the case when the Eq. (1) is a Fuchsian differential equation and K is the field
of rational function of one complex variable Theorem 3 has a topological explanation
(see [3] which allows to prove much stronger version of this result). But in general
case Theorem 3 does not have a similar visual explanation.

In these notes I discuss an elementary proof of Theorem 1 based on old arguments
suggested by Liouville, Ritt and Rosenlicht.

Maxwell Rosenlicht in 1973 proved Rosenlicht (1973) the following theorem.

Theorem 4 Let n be a positive integer, and let Q be a polynomial in several variables
with coefficients in a differential field K and of total degree less than n. Then if the
equation

un = Q(u, u′, u′′, . . . ) (2)

has a solution representable by generalized quadratures over K , it has a solution
algebraic over K .

The logarithmic derivative u = y′/y of any solution of the Eq. (1) satisfies the asso-
ciated with (1) generalized Riccati’s equation of order (n − 1), which is a particular

2 A generaliztion of Theorem 1 for nonlinear homogeneous equations presented in the Sect. 2.7 does not
follow from the Picard-Vessio theory.
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Solvability of Equations by Quadratures and Newton’s Theorem 195

case of the Eq. (2). Rosenlicht showed that Theorem 1 easily follows from Theorem 4
applied to the corresponding generalized Riccati’s equation (see Sect. 2.7). In modern
differential algebra abstract fields equipped with an operation of differentiation are
considered. The Rosenlicht’s proof of Theorem 4 is not elementary: it is applicable to
abstract differential fields of characteristic zero andmakes use of the valuation theory. 3

Liouvillive and Ritt deal with fields of meromorphic functions with the usual differ-
entiation. This point of view is natural for the analytic theory of differential equations.
Solutions of differential equations are function, not elements of abstract differential
fields. Analytic function could be multivalued, could have singularities and so on. For
applications of results from differential algebra to the theory of differential equations
some extra work is needed. In these notes we deal with functional differential fields.
We present needed material in Sects. 2.3–3.1, mainly following the presentation from
the book [3].

Joseph Liouville in 1839 proved Theorem 1 for n = 2. Joseph Fels Ritt in 1948
simplified his proof (see Ritt 1948). The logarithmic derivative u = y′/y of any
solution y of the homogeneous linear differential Eq. (1) of second order satisfies the
Riccati’s equation

u′ + a1u + a2 + u2 = 0. (3)

To prove Theorem 1 for n = 2 Liouville and Ritt proved first Theorem 4 for
the Riccati’s Eq. (3). To do that Ritt considered a special one parametric family of
solutions of (3) and used an expansion of these solutions as functions of the parameter
into converging Puiseux series. Ritt used a generalization of the following theorem
based on ideas suggested by Newton.

Consider an algebraic function z(y) defined by an equation P(y, z) = 0 where P is
a polynomial with coefficients in a subfield K ofC. Then all branches of the algebraic
function z(y) at the point y = ∞ can be developed into converging Puiseux series
whose coefficients belong to a finite extension of the field K .

A generalized Newton’s Theorem claims that the similar result holds if instead of
a numerical field of coefficient one takes a field K whose element are meromorphic
functions on a connected Riemann surface. In the Ritt’s book Ritt (1948) this result is
proved in the same way as its classical version using the Newton’s polygon method.

Unfortunately Ritt’s proof is written in old mathematical language and does not
fit into our presentation. Theorem 13 provides an exact statement of the generalized
Newton’s Theorem. It is presented without proof: main arguments proving it are well
known and classical. One also can obtain a proofmodifyingRitt’s exposition. Theorem
13 plays a crucial role in these notes. For the sake of completeness I will present its
modern proof in a separate paper.

In these notes I discuss a proof of Theorem 4 which does not rely on the valuation
theory. It generalizes Ritt’s arguments (makes use of the Puiseux expansion via a
generalized Newton’s Theorem) and provides an elementary proof of the classical
Theorem 1.

3 According to Michael Singer the valuation theory used in Rosenlicht’s proof is a fancy way of using
power series methods (private communication).
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196 A. Khovanskii

The idea of the proof goes back to Liouville and Ritt. I came up with it trying to
understand and comment the classical book written by Ritt (1948).

I am grateful toMichael Singer who invitedme to write comments for a new edition
of this book.

2 Generalized Quadratures over Functional Differential Fields

In the Sects. 2.1–2.6we present definitions and general statements related to functional
and abstact differential fields and classes of their extensions including extensions by
generalized quadratures. We follow mainly the presentation from the book [3]. In
the Sect. 2.7 we define the generalized Riccati’s equation and reduce Theorem 1 to
Theorem 4.

2.1 Abstract Differential Fields

A field F is said to be a differential field if an additive map a → a′ is fixed that
satisfies the Leibnitz rule (ab)′ = a′b+ab′. The element a′ is called the derivative of
a. An element y ∈ F is called a constant if y′ = 0. All constants in F form the field of
constants. We add to the definition of differential field an extra condition that the field
of constants is the field of complex numbers (for our purpose it is enough to consider
fields satisfying this condition). An element y ∈ F is said to be: an exponential of
integral of a if y′ = ay; an integral of a if y′ = a. In each of these cases, y is defined
only up to a multiplicative or an additive complex constant.

Let K ⊂ F be a differential subfield in F . An element y is said to be an integral
over K if y′ = a ∈ K . An exponential of integral over K is defined similarly.

Suppose that a differential field K and a set M lie in some differential field F .
The adjunction of the set M to the differential field K is the minimal differential field
K 〈M〉 containing both the field K and the set M . We will refer to the transition from
K to K 〈M〉 as adjoining the set M to the field K .

Definition 1 An extension F of a differential field K is said to be:

(1) a generalized extension by integral if there are y ∈ F and f ∈ K such that y′ = f ,
y is transcendental over K , and F is a finite extension of the field K 〈y〉;

(2) a generalized extension by exponential of integral if there are y ∈ F , f ∈ K such
that y′ = f y, y is transcendental over K , and F is a finite extension of the field
K 〈y〉;

(3) an extension by generalized quadratures if there exists a chain of differential fields
K = F0 ⊂ · · · ⊂ Fn ⊃ F such that Fi+1 = Fi < yi > for every i = 0, . . . ,
n − 1 where yi is an exponential of integral, an integral, or an algebraic element
over the differential field Fi .

An element a ∈ F is representable by generalized quadratures over K , K ⊂ F ,
if it is contained in a certain extension of the field K by generalized quadratures. The
following lemma is obvious.
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Solvability of Equations by Quadratures and Newton’s Theorem 197

Lemma 5 An extension K ⊂ F is an extension by generalized quadratures if there is
a chain K = F0 ⊂ · · · ⊂ Fn such that F ⊂ Fn and for every i = 0, . . . , n − 1 or
Fi+1 is a finite extension of Fi , or Fi+1 is a generalized extension by integral of Fi ,
or Fi+1 is a generalized extension by exponential integral of Fi .

2.2 Functional Differential Fields and their Extensions

Let K be a subfield in the field F of all meromorphic functions on a connected domain
U of the Riemann sphereC1∪∞with the fixed coordinate function x onC1. Suppose
that K contains all complex constants and is stable under differentiation (i.e. if f ∈ K ,
then f ′ = d f /dx ∈ K ). Then K provides an example of a functional differential field.

Let us now give a general definition.

Definition 2 LetU , x be a pair consisting of a connected Riemann surfaceU and a non
constant meromorphic function x on U . The map f → d f /dx defines the derivation
in the field F of all meromorphic functions on U (the ratio of two meromorphic 1-
forms is a well-defined meromorphic function). A functional differential field K is
any differential subfield of F (containing all complex constants).

With any function f from a functional differential field K let us associate its
meromorphic germ fa at point a ∈ U . The differential field K is isomorphic to
the differential field Ka of germs at a of function belonging to K .

The following construction helps to extend functional differential fields. Let K be
a differential subfield of the field of meromorphic functions on a connected Riemann
surfaceU equipped with a meromorphic function x . Consider any connected Riemann
surface V together with a nonconstant analytic map π : V → U . Fix the function π∗x
on V . The differential field F of all meromorphic functions on V with the differentia-
tion ϕ′ = dϕ/π∗dx contains the differential subfield π∗K consisting of functions of
the form π∗ f , where f ∈ K . The differential field π∗K is isomorphic to the differ-
ential field K , and it lies in the differential field F . For a suitable choice of the surface
V , an extension of the field π∗K , which is isomorphic to K , can be done within the
field F .

Suppose that we need to extend the field K , say, by an integral y of some function
f ∈ K . This can be done in the following way. Consider the covering of the Riemann
surface U by the Riemann surface V of an indefinite integral y of the form f dx
on the surfave U . By the very definition of the Riemann surface V , there exists a
natural projection π : V → U , and the function y is a single-valued meromorphic
function on the surface V . The differential field F of meromorphic functions on
V with the differentiation ϕ′ = dϕ/π∗dx contains the element y as well as the
field π∗K isomorphic to K . That is why the extension π∗K 〈y〉 is well defined as
a subfield of the differential field F . We mean this particular construction of the
extension whenever we talk about extensions of functional differential fields. The
same construction allows to adjoin a logarithm, an exponential, an integral or an
exponential of integral of any function f from a functional differential field K to
K . Similarly, for any functions f1, . . . , fn ∈ K , one can adjoin a solution y of an
algebraic equation yn + f1yn−1 + · · · + fn = 0 or all the solutions y1, . . . , yn of this
equation to K (the adjunction of all the solutions y1, . . . , yn can be implemented on
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198 A. Khovanskii

the Riemann surface of the vector-function y = y1, . . . , yn). In the same way, for any
functions f1, . . . , fn+1 ∈ K , one can adjoin the n-dimensional C-affine space of all
solutions of the linear differential equation y(n) + f1y(n−1) + · · · + fn y + fn+1 = 0
to K (Recall that a germ of any solution of this linear differential equation admits an
analytic continuation along a path on the surface U not passing through the poles of
the functions f1, . . . , fn+1.).

Thus, all above–mentioned extensions of functional differential fields can be imple-
mented without leaving the class of functional differential fields. When talking about
extensions of functional differential fields, we always mean this particular procedure.

The differential field of all complex constants and the differential field of all rational
functions of one variable can be regarded as differential fields of functions defined on
the Riemann sphere.

2.3 Classes of Functions and Operations onMultivalued Functions

An indefinite integral of an elementary function is a function rather than an element
of an abstract differential field. In functional spaces, for example, apart from differ-
entiation and algebraic operations, an absolutely non-algebraic operation is defined,
namely, the composition. Anyway, functional spaces provide more means for writ-
ing “explicit formulas” than abstract differential fields. Besides, we should take into
account that functions can be multivalued, can have singularities and so on.

In functional spaces, it is not hard to formalize the problem of unsolvability of
equations in explicit form. One can proceed as follows: fix a class of functions and
say that an equation is solvable explicitly if its solution belongs to this class. Different
classes of functions correspond to different notions of solvability.

2.4 Defining Classes of Functions by the Lists of Data

A class of functions can be introduced by specifying a list of basic functions and a list
of admissible operations. Given the two lists, the class of functions is defined as the
set of all functions that can be obtained from the basic functions by repeated applica-
tion of admissible operations. Below, we define the class of functions representable
by generalized quadratures and the class of functions representable by generalized
quadratures over a functional differential field K in exactly this way.

Classes of functions, which appear in the problems of solvability of differential
equations by quadratures, contain multivalued functions. Thus the basic terminology
should be made clear. We work with multivalued functions “globally”, which leads to
a more general understanding of classes of functions defined by lists of basic functions
and of admissible operations. A multivalued function is regarded as a single entity.
Operations on multivalued functions can be defined. The result of such an operation
is a set of multivalued functions; every element of this set is called a function obtained
from the given functions by the given operation. A class of functions is defined as
the set of all (multivalued) functions that can be obtained from the basic functions by
repeated application of admissible operations.
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Solvability of Equations by Quadratures and Newton’s Theorem 199

2.5 Operations onMultivalued Functions

Let us define, for example, the sum of two multivalued functions on a connected
Riemann surface U .

Definition 3 Take an arbitrary point a in U , any germ fa of an analytic function f at
the point a and any germ ga of an analytic function g at the same point a. We say that
the multivalued function ϕ onU generated by the germ ϕa = fa + ga is representable
as the sum of the functions f and g.

For example, it is easy to see that exactly two functions of one variable are repre-
sentable in the form

√
x + √

x , namely, f1 = 2
√
x and f2 ≡ 0. Other operations on

multivalued functions are defined in exactly the same way. For a class of multivalued
functions, being stable under addition means that, together with any pair of its func-
tions, this class contains all functions representable as their sum. The same applies to
all other operations on multivalued functions understood in the same sense as above.

In the definition given above, not only the operation of addition plays a key role but
also the operation of analytic continuation hidden in the notion ofmultivalued function.
Indeed, consider the following example. Let f1 be an analytic function defined on an
open subset V of the complex lineC1 and admitting no analytic continuation outside of
V , and let f2 be an analytic function on V given by the formula f2 = − f1. According
to our definition, the zero function is representable in the form f1 + f2 on the entire
complex line. By the commonly accepted viewpoint, the equality f1 + f2 = 0 holds
inside the region V but not outside.

Working with multivalued functions globally, we do not insist on the existence of a
common region, were all necessary operations would be performed on single-valued
branches of multivalued functions. A first operation can be performed in a first region,
then a second operation can be performed in a second, different region on analytic
continuations of functions obtained on the first step. In essence, this more general
understanding of operations is equivalent to including analytic continuation to the list
of admissible operations on the analytic germs.

2.6 Functions Representable by Generalized Quadratures

In this section we define functions of one complex variable representable by gen-
eralized quadratures and functions representable by generalized quadratures over a
functional differential field. We also discuss a relation of these notions with exten-
sions of functional differential fields by generalized quadratures. First we’ll present
needed lists of basic functions and of admissible operations.

List of basic elementary functions

1. All complex constants and an independent variable x .
2. The exponential, the logarithm, and the power xα where α is any constant.
3. The trigonometric functions sine, cosine, tangent, cotangent.
4. The inverse trigonometric functions arcsine, arccosine, arctangent, arccotangent.
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200 A. Khovanskii

Lemma 6 Basic elementary functions can be expressed through the exponentials and
the logarithms with the help of complex constants, arithmetic operations and compo-
sitions.

Lemma 6 can be considered as a simple exercise. Its proof can be found in Khovanskii
(2013).

List of some classical operations

1. Operation of composition takes functions f ,g to the function f ◦ g.
2. The arithmetic operations take functions f , g to the functions f + g, f − g, f g,

and f /g.
3. The operation of differentiation takes function f to the function f ′.
4. The operation of integration takes function f to a solution of equation y′ = f (the

function y is defined up to an additive constant).
5. The operation of taking exponential of integral takes function f to a solution of

equation y′ = f y (the function y is defined up to a multiplicative constant).
6. The operation of solving algebraic equations takes functions f1, . . . , fn to the

function y such that yn + f1yn−1 + · · · + fn = 0 ( the function y is not quite
uniquely determined by functions f1, . . . , fn since an algebraic equation of degree
n can have n solutions).

Definition 4 The class of functions of one complex variable representable by gener-
alized quadratures is defined by the following data:

List of basic functions: basic elementary functions.
List of admissible operations: Compositions, Arithmetic operations, Differentia-

tion, Integration,Operation of taking exponential of integral, Operation of solving
algebraic equations.

Theorem 7 A (possibly multivalued) function of one complex variable belongs to the
class of functions representable by generalized quadratures if and only if it belongs
to some extension of the differential field of all constant functions of one variable by
generalized quadratures.

Theorem 7 follows from Lemma 6 (all needed arguments can be found in Khovan-
skii 2013).

Let K be a functional differential field consisting of meromorphic functional on a
connected Riemann surface U equipped with a meromorphic function x .

Definition 5 The class of functions representable by generalized quadratures over the
functional differential field K is defined by the following data:

List of basic functions: all functions from the field K .
List of admissible operations: Operation of composition with a function φ rep-

resentable by generalized quadratures that takes f to φ ◦ f , Arithmetic operations,
Differentiation, Integration, Operation of taking exponential of integral, Operation of
solving algebraic equations.

Theorem 8 A (possibly multivalued) function on the Riemann surface U belongs to
the class of generalized quadratures over a functional differential field K if and only
if it belongs to some extension of K by generalized quadratures.
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Solvability of Equations by Quadratures and Newton’s Theorem 201

Theorem 8 follows from Lemma 6 (all needed arguments can be found in Khovan-
skii 2013).

2.7 Generalized Riccati’s Equation

In this section we define the generalized Riccati’s equation and reduce Theorem 1 to
Theorem 4. In this section we also generalize Theorem 1 for nonlinear homogeneous
equations (this generalization will not be used in the next sections).

Assume that u is the logarithmical derivative of a non identically equal to zero
meromorphic function y, i.e the relation y′ = uy holds.

Definition 6 Let Dn be a polynomial in u and in its derivatives u, u′, . . . , u(n−1) up to
order (n − 1) defined by induction by the following conditions:

D0 = 1; Dk+1 = dDk

dx
+ uDk .

Lemma 9 (1)The polynomial Dn has integral coefficients and deg Dn = n. The degree
n homogeneous part of Dn equals to un (i.e. Dn = un + D̃n where deg D̃n < n). (2)
If y is a function whose logarithmic derivative equals to u (i.e. if y′ = uy) then for
any n ≥ 0 the relation y(n) = Dn(u)y holds.

Both claims of Lemma 9 can be easily checked by induction.
Consider a homogeneous linear differential Eq. (1) whose coefficients ai belong to

a differential field K .

Definition 7 The equation

Dn + a1Dn−1 + · · · + anD0 = 0 (4)

of order n− 1 is called the generalized Riccati’s equation for the homogeneous linear
differential Eq. (1).

Lemma 10 A non identically equal to zero function y satisfies the linear differential
Eq. (1) if and only if its logarithmic derivative u = y′/y satisfies the generalized
Riccati’s Eq. (4).

Proof Let y be a nonzero solution of (1) and let u be its logarithmic derivative. Then
dividing (1) by y and using the identity y(k)/y = Dk(u) we obtain that u satisfies (4).
If u is a solution of (4) then multiplying (4) by y and using the identity y(k) = Dk(u)y
we obtain that y is a non zero solution of (1). ��
Corollary 11 (1) The Eq. (1) has a non zero solution representable by generalized
quadratures over K if andonly if theEq. (4)has a solution representable by generalized
quadratures over K .

(2) The Eq. (1) has a solution y of the form y = exp z where z′ = f is an algebraic
function over K if and only if the Eq. (4) has an algebraic solution over K .
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202 A. Khovanskii

Proof (1) A non zero function y is representable by generalized quadratures over K
if and only if its logarithmic derivative u = y′/y is representable by generalized
quadratures over K .

(2) A function y is equal to exp z where z′ = f if and only if its logarithmic
derivative is equal to f . ��

The generalized Riccati’s Eq. (4) satisfies the conditions of Theorem 4. Thus The-
orem 1 follows from Theorem 4 and from Corollary 11.

Let us generalize the results of this section. Consider an order n homogeneous
equation

P(y, y′, . . . , y(n)) = 0 (1’)

where P is a degree m homogeneous polynomial in n + 1 variables x0, x1, . . . , xn
over a functional differential field K .

Definition 7’ The equation

P(D0, D1, . . . , Dn) = 0 (4’)

of order n − 1 is called the generalized Riccati’s equation for the homogeneous Eq.
(1’).

Lemma 10’ A non identically equal to zero function y satisfies the homogeneous Eq.
(1’) if and only if its logarithmic derivative u = y′/y satisfies the generalized Riccati’s
Eq. (4’).

Corollary 11’ (1) The Eq. (1’) has a non zero solution representable by generalized
quadratures over K if and only if the Eq. (4’) has a solution representable by gener-
alized quadratures over K .

(2) The Eq. (1’) has a solution y of the form y = exp z where z′ = f is an algebraic
function over K if and only if the Eq. (4’) has an algebraic solution over K .

Lemma 10’ and Corollary 11’ can be proved exactly in the way as Lemma 10 and
Corollary 11’.

Let us defined the ξ -weighted degree degξ x
p of the monomial x p = x p0

0 · · · x pn
n

by the following formula:

degξ x
p =

i=n∑

i=0

imi .

Wewill say that a polynomial P(x0, . . . , xn) satisfies the ξ -weighted degree condition
if the sum of coefficients of all monomials in P having the biggest ξ -weighted degree
is not equal to zero. A polynomial P having a unique monomial with the biggest
ξ -weighted degree automatically satisfies this condition. For example a degree m
polynomial P containing a term axmn with a �= 0 automatically satisfies ξ -weighted
degree condition.
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Solvability of Equations by Quadratures and Newton’s Theorem 203

Theorem 1’ Consider the homogeneous Eq. (1’) with the polynomial P satisfying the
ξ -weighted degree condition. If this equation has a non zero solution representable
by generalized quadratures over K then it necessarily has a solution of the form
y1 = exp z where z′ is algebraic over K .

Proof It is easy to check that if the polynomial P satisfies the ξ -weighted degree
condition then the generalized Riccati’s Eq. (4’) satisfies the conditions of Theorem
4. Thus Theorem 1’ follows from Theorem 4 and corollary 11’. ��
Remark There exists a complete analog of Galois theory for linear homogeneous
differential equations (see van der Put and Singer 2003). Theorem 1 can be proved
using this theory.ThedifferentialGalois groupof a nonlinear homogeneous differential
equation (1’) could be very small and for such equation a complete analog of Galois
theory does not exist. Thus Theorem 1’ can not be proved in a similar way.

3 Special Extensions of Functional Differential Fields

In the chapter we consider simple extensions of functional differential fields. We also
consider algebraic extensions of fields of rational functions over functional fields. In
the Sect. 3.1 we state Theorem 13 (generalized Newton’s Theorem) playing a crucial
role for these notes. Sections 3.4.3 and 3.5.3 contains first steps for our proof of
Theorem 4.

3.1 Finite Extensions of Fields of Rational Functions

In this section we will discuss finite extensions of the field K (y) of rational functions
over a subfield K of the field ofmeromorphic function on a connectedRiemann surface
U .

Let F be extension of K (y) by a root z of a degreem polynomial P(z) ∈ (K [y])[z]
over the ring K [y] irreducible over the field K (y). Let X be the product U × C

1

where C1 is the standard complex line with the coordinate function y. An element of
the field K (y) can be considered as meromorphic function on X . One can associate
with the element z ∈ F a multivalued algebroid function on X defined by equation
P(z) = 0. Let D(y) be the discriminant of the polynomial P . Let � ⊂ U × C

1 = X
be the hypersurface defined by equation pm(y) ·D(y) = 0 where pm(y) is the leading
coefficient of the polynomial P .

Lemma 12 (1) About a point x ∈ X\� the equation P(z) = 0 defines m germs zi of
analytic functions whose values at x are simple roots of polynomial P. (2) Let x be the
point (a, y) ∈ U × C

1\�. Then the field F is isomorphic to the extension Ka(y, zi )
of the field Ka of germs at a ∈ U of functions from the field K (considered as germs
at x = (a, y) of functions independent of y) extended by the independent variable y
and by the germ zi at x satisfying the equation P(z) = 0.

Proof The statement (1) follows from the implicit function theorem. The statement
(2) follows from (1). ��
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Below we state Theorem 13 which is a generalization of Newton’s Theorem about
expansion of an algebraic functions into converging Puiseux series. It is stated without
proof (see comments in the introduction).

We use notations introduced in the beginning of this section. Let zi be an element
satisfying a polynomial equation P(z) = 0 over the ring K [y], where K is a subfield
of the field of meromorphic functions onU . Then there exists a finite extension KP of
the field K associated with the polynominal P such that the following theorem holds.

Theorem 13 There is a finite covering π : UP → U\OP where OP ⊂ U is a discrete
subset, such that the following properties hold:

(1) the extension KP canbe realized bya subfield of the field ofmeromorphic functions
on UP containing the field π∗K isomorphic to K .

(2) there is a continuous positive function r : U\OP → R such that in the open
domain W ⊂ (U\OP ) × C

1 defined by the inequality |y| > r(a) all m germs
zi o f z at a point (a, y) can be developed into converging Puiseux series

zi = zik y
k
p + zik−1 y

k−1
p + · · · (5)

whose coefficients zi j are germs of analytic functions at the point a ∈ U\OP

having analytical continuation as regular functions on UP belonging to the field
KP.

Theorem 13 for a special case when the field K is a subfield of the field of complex
numbers it is natural to name the Newton’s Theorem. One can consider K as a field
of constant functions on any connected Riemann surface U . One can chose OP to be
the empty set, UP to be equal U , projection π : UP → U to be the identity map, the
function r : U → R to be a big enough constant. In this case Theorem 13 states that
an algebraic function z has a Puiseux expansion at infinity whose coefficients belong
to a finite extension KP of the field K . This statement can be proved by Newton’s
polygon method.

Let F be an extension of K (y) by a root z of polynomial P and let KP be the
finite extension of the field K introduced in Theorem 13. The extension FP of the
field KP (y) by z is easy to deal with. Denote the product UP × C

1 by XP .

Lemma 14 Let x ∈ XP be the point (a, y0) ∈ UP×C
1. Then the field FP is isomorphic

to the extension KP,a(y, zi ) of the field KP,a of germs at a ∈ UP of functions from the
field KP (considered as germs at x = (a, y0) of functions independent of y) extended
by the independent variable y and by the germ at x of the function zi defined by (5).

Lemma 14 follows from Theorem 13.

3.2 Finite Extensions of Differential Fields

In this section we discuss finite extensions of functional differential fields.
Let

P(z) = zn + a1z
n−1 + · · · + an
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be an irreducible polynomial over K , P ∈ K [z]. Suppose that a functional differential
field F contains K and a root z of P .

Lemma 15 The field K (z) is stable under the differentiation.

Proof Since P is irreducible over K , the polynomial ∂P
∂z has no common roots with

P and is different from zero in the field K [z]/(P). Let M be a polynomial satisfying
a congruence M ∂P

∂z ≡ − ∂P
∂x (mod P). Differentiating the identity P(z) = 0 in the

field F , we obtain that ∂P
∂z (z)z′ + ∂P

∂x (z) = 0, which implies that z′ = M(z). Thus the
derivative of the element z coincides with the value at z of the polynomial M . Lemma
15 follows from this fact. ��

Let K ⊂ F and K̂ ⊂ F̂ be functional differential fields, and P , P̂ irreducible
polynomials over K , K̂ correspondingly. Suppose that F , F̂ contain roots z, ẑ of P ,
P̂ .

Theorem 16 Assume that there is an isomorphism τ : K → K̂ of differential fields K ,
K̂ which maps coefficients of the polynomial P to the corresponding coefficients of the
polynomial P̂. Then τ can be extended in a unique way to the differential isomorphism
ρ : K (z) → K̂ (ẑ).

Proof of Theorem 16 could be obtain by the arguments used in the proof
of Lemma 15.

3.3 Extension by one Transcendental Element

LetU be a connected Riemann surface and let K be a differential field of meromorphic
functions on U . Let C1 be the standard complex line with the coordinate function
y. Elements of the field K (y) of rational functions over K could be considered as
meromorphic functions on X = U × C

1.
In the field K (y) there are two natural operations of differentiations. The first

operation R(y) → ∂R
∂x (y) is defined as follows: the derivative ∂

∂x of the independent
variable y is equal to zero, and derivative ∂

∂x of an element a ∈ K is equal to its
derivative a′ in the field K . For the second operation R(y) → ∂R

∂ y (y) the derivative of
an element a ∈ K is equal to zero and the derivative of the independent variable y is
equal to one.

Let K ⊂ F be differential fields and let θ ∈ F be a transcendental element over
K . Assume that θ ′ ∈ K 〈θ〉. Under this assumption the field K 〈θ〉 has a following
description.

Lemma 17 (1) The map τ : K 〈θ〉 → K (y) such that τ(θ) = y and τ(a) = a
for a ∈ K provides an isomorphism between the field K 〈θ〉 considered without the
operation of differentiation and the field K (y) of rational functions over K . (2) If
τ(θ ′) = w ∈ K (y) then for any R ∈ K (y) and z ∈ K 〈θ〉 such that τ(z) = R the
following identity holds

τ(z′) = ∂R

∂x
+ ∂R

∂ y
w. (6)
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Proof The first claim of the lemma is straightforward. The second claim follows from
the chain rule. ��

Let � ⊂ X = U ×C
1 be the graph of function θ : U → C

1. The following lemma
is straightforward.

Lemma 18 The differential field K 〈θ〉 is isomorphic to the field K (y)|� obtained by
restriction on � of functions from the field K (y) equipped with the differentiation
given by (6). For any point a ∈ � The differential field K 〈θ〉 is isomorphic to the
differential field of germs at a ∈ � of functions from K (y)|�.

3.4 An Extension by Integral

In this section we consider extensions of transcendental degree one of a differential
field K containing an integral y over K which does not belong to K , y /∈ K .

3.4.1 A Pure Transcendental Extension by Integral

Let θ be an integral over K ,i.e θ ′ = f ∈ K . Assume that θ is a transcendental element
over K .4

Lemma 19 (1) The field K 〈θ〉 is isomorphic to the field K (y) of rational functions
over K equipped with the following differentiation

R′ = ∂R

∂x
+ ∂R

∂ y
f . (7)

(2) For every complex number ρ ∈ C the map θ → θ + ρ can be extended to the
unique isomorphism Gρ : K 〈θ〉 → K 〈θ〉 which fixes elements of the field K .

(3) Each isomorphism of K 〈θ〉 over K is an isomorphism Gρ for some ρ ∈ C. Thus
the Galois group of K 〈θ〉 over K is the additive group of complex numbers C.

Proof The claim (1) follows from Lemma 17. For any ρ ∈ C the element θρ = θ + ρ

is a transcendental element over K and θ ′
ρ equals to f . Thus the claims (2) is correct.

The claim (3) followst from (2) because if y′ = f then y = θρ for some ρ ∈ C. ��

3.4.2 A Generalized Extension by Integral

According to Lemma 19 the differential field K 〈θ〉 is isomorphic to the field K (y)
with the differentiation given by (7). Let F be an extension of K 〈θ〉 by an element
z ∈ F which satisfies some equation P̃(z) = 0 where P̃ is an irreducible polynomial
over K 〈θ〉. The isomorphism between K 〈θ〉 and K (y) transforms the polynomial P̃
into some polynomial P over K (y). Below we use notation from Sect. 3.1 and deal
we the multivalued algebroid function z on X defined by P(z) = 0.

4 Easy to check that if an integral θ over K does not belong to K , then θ is a transcendental element over
K (see Khovanskii 2013). We will not use this fact.
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Assume that at a point x ∈ X there are germs of analytic functions zi satisfying the
equation P(zi ) = 0. Let θρ be the function (θ + ρ) : UP → C

1 and let �ρ ⊂ X =
U × C

1 be its graph. The point x = (p, q) ∈ U × C
1 belongs to the graph �ρ(x) for

ρ(x) = q − θ(p).
Let K (y)|�ρ(x) be the differential field of germs at the point x ∈ �ρ(x) of restrictions

on �ρ(x) of functions from the field K (y) equipped with the differentiation given by
(7).

Lemma 20 The differential field F is isomorphic to the finite extension of the differ-
ential field K (y)|�ρ(x) obtained by adjoining the germ at x ∈ �ρ(x) of the restriction
to �ρ(x) of an analytic germ zi satisfying P(zi ) = 0.

Proof For the trivial extension F = K 〈θ〉 Lemma 20 follows from Lemmas 18, 19.
Theorem 16 allows to complete the proof for non trivial finite extensions F of K 〈θ〉.

��
According to Sect. 3.1 with the polynomial P over K (y) one can associate the

finite extension KP of the field K and the Riemann surfaceUP such that Theorem 13
holds. Since K is functional differential field the field KP has a natural structure of
functional differential field. Below we will apply Lemma 20 taking instead of K the
field KP and considering the extension FP ⊃ KP 〈θ〉 by the same algebraic element
z ∈ F . The use of KP instead of K allows to apply the expansion (5) for zi .

Theorem 21 Let x ∈ XP = UP×C
1 be a point (a, y0)with |y| >> 0. The differential

field FP is isomorphic to the extension of the differential field of germs at the point
a ∈ UP of functions from the differential fiels KP by the following germs: by the germ
at a of the integral θρ(x) of the function f ∈ K, and by a germ at a of the composition
zi (θρ) where zi is a germ at x of a function given by a Puiseux series (5).

Proof Theorem 21 follow from Lemma 20 and Theorem 13. ��

3.4.3 Solutions of Equations in a Generalized Extension by Integral

We will use notations from sects. 3.4.1 and 3.4.2.
Let T (u, u′, . . . , u(n) by a polynomial in independent function u and its derivatives

with coefficients from the functional differential field K . Consider the equation

T (u, u′, . . . , u(N )) = 0. (8)

In general the derivative of the highest order u(N ) cannot be represented as a function
of other derivatives via the relation (8). Thus even existence of local solutions of (8)
is problematic and we have no information about global behavior of its solutions.

Assume that (8) has a solution z in a generalized extension by integral F ⊃ K 〈θ〉
of K . The solution z has a nice global property: it is a meromorphic function on a
Riemann surface UP with a projection π : UP → U which proves a locally trivial
covering above U\OP , where OP ⊂ U is discrete subset.

Moreover existence of a solution z implies existence of a family z(ρ) of similar
solutions depending on a parameter ρ: one obtains such family of solutions by using
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an integral θ + ρ instead of the integral θ (see Lemma 20). If the parameter ρ has big
absolute value |ρ| >> 0 for a point a ∈ UP of the germ z(ρ) can be expand in the
Piueux series in θρ :

zi (ρ) = zik θ
k
p

ρ + zik−1θ
k−1
p

ρ + . . . (9)

The series is converging and so it can be differentiate using the relation θ ′
ρ = f .

Lemma 22 If z′ik �= 0 then the leading term of the Puiseux series for zi (ρ)′ is z′ik θ
k
p

ρ .

Otherwise the leading term has degree < k
p . The leading term of the derivative of any

order of zik has degree ≤ k
p .

Let us plug into the differential polynomial T (u, u′, . . . , u(N )) the germ (9) and
develop the result into Puiseux series in θρ . If the germ zi (ρ) is a solution of the
Eq. (8) then all terms of this Puiseux series are equal to zero. In particular the leading
coefficient is zero. This observation is an important step for proofing Theorem 4.

3.5 An extension by an exponential of integral

In this section we consider extensions of transcendental degree one of a differential
field K containing an exponential integral y over K which is not algebraic over K .

3.5.1 A Pure Transcendental Extension by an Exponential Integral

Let θ be an an exponential of integral over K , i.e θ ′ = f θ where f ∈ K . Assume that
θ is a transcendental element over K .5

Lemma 23 (1) The field K 〈θ〉 is isomorphic to the field K (y) of rational functions
over K equipped with the following differentiation

R′ = ∂R

∂x
+ ∂R

∂ y
f y. (10)

(2) For every complex number μ ∈ C
∗ not equal to zero the map θ → μθ can be

extended to the unique isomorphism Gμ : K 〈θ〉 → K 〈θ〉 which fixes elements of the
field K .

(3) Each isomorphism of K 〈θ〉 over K is an isomorphism Gμ for some μ ∈ C
∗.

Thus the Galois group of K 〈θ〉 over K is the multiplicative group of complex numbers
C

∗.
Proof The claim (1) follows from Lemma 17. For any μ ∈ C

∗ the element θμ = μθ

is a transcendental element over K and θ ′
μ = f θ . Thus the claims (2) is correct. The

claim (3) follows from (2) because if y′ = f y and y �= 0 then y = θμ for some
μ ∈ C

∗. ��
5 Easy to check that if an an exponential of integral θ over K is algebraic over K , then θ is a radical over
K , i.e. θk ∈ K for some positive integral k (see Khovanskii 2013). We will not use this fact.
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3.5.2 A Generalized Extension by Exponential of Integral

According to Lemma 23 the differential field K 〈θ〉 is isomorphic to the field K (y)
with the differentiation given by (10). Let F be an extension of K 〈θ〉 by an element
z ∈ F which satisfies some equation P̃(z) = 0 where P̃ is an irreducible polynomial
over K 〈θ〉. The isomorphism between K 〈θ〉 and K (y) transforms the polynomial P̃
into some polynomial P over K (y). Below we use notation from Sect. 3.1 and deal
we the multivalued algebroid function z on X defined by P(z) = 0.

Assume that at a point x ∈ X there are germs of analytic function zi satisfying the
equation P(zi ) = 0. Let θμ be the function (μθ) : UP → C

1 and let �μ ⊂ X =
U × C

1 be its graph. The point x = (p, q) ∈ U × C
1 where q �= 0 belongs to the

graph �μ(x) for μ(x) = q · θ(p)−1.
Let K (y)|�μ(x) be the differential field of germs at the point x ∈ �μ(x) of restrictions

on �μ(x) of functions from the field K (y) equipped with the differentiation given by
(10).

Lemma 24 The differential field F is isomorphic to the finite extension of the differ-
ential field K (y)|�μ(x) obtained by adjoining the germ at x ∈ �μ(x) of the restriction
to �μ(x) of an analytic germ zi satisfying P(zi ) = 0.

Proof For the trivial extension F = K 〈θ〉 Lemma 24 follows from Lemmas 18, 23.
Theorem 16 allows to complete the proof for non trivial finite extensions F of K 〈θ〉.

��
According to Sect. 3.1 with the polynomial P over K (y) one can associate the

finite extension KP of the field K and the Riemann surfaceUP such that Theorem 13
holds. Since K is functional differential field the field KP has a natural structure of
functional differential field. Below we will apply Lemma 24 taking instead of K the
field KP and considering the extension FP ⊃ KP 〈θ〉 by the same algebraic element
z ∈ F . The use of KP instead of K allows to apply the expansion (5) for zi .

Theorem 25 Let x ∈ XP = UP×C
1 be a point (a, y0)with |y| >> 0. The differential

field FP is isomorphic to the extension of the differential field of germs at the point
a ∈ UPexponential of integral θμ(x), where θ ′

μ(x) = f θμ(x) for the function f ∈ K,
and by a germ at a of the composition zi (θμ) where zi is a germ at x of a function
given by a Puiseux series (5).

Proof Theorem 25 follow from Lemma 24 and Theorem 13. ��

3.5.3 Solutions of Equations in a Generalized Extension by Exponential of Integral

Assume that (8) has a solution z in a generalized extension by exponential of integral
F ⊃ K 〈θ〉 of K . Solution z has a nice global property: it is a meromorphic function on
a Riemann surface UP with a projection π : UP → U which proves a locally trivial
covering above U\OP , where OP ⊂ U is discrete subset.

Moreover existence of a solution z implies existence of family z(μ) of similar
solutions depending on a parameter μ ∈ C

∗: one obtains such family of solutions

123

Author's personal copy



210 A. Khovanskii

by using an exponential of integral μθ instead of the exponential of integral θ (see
Lemma 24). If the parameter μ has big absolute value μ| >> 0 for a point a ∈ UP of
the germ z(μ) can be expand in the Piueux series in θμ:

zi (μ) = zik θ
k
p

μ + zik−1θ
k−1
p

μ + . . . (11)

The series is converging and so it can be differentiate using the relation θ ′
μ = f θμ.

Lemma 26 If z′ik + k
p zik �= 0 then the leading term of the Piueux series for zi (μ)′

is (z′ik + k
p zik )θ

k
p

μ . Otherwise the leading term has degree < k
p . The leading term of

derivative of any order of zik has degree ≤ k
p .

Let us plug into the differential polynomial T (u, u′, . . . , u(N )) the germ (11) and
develop the result into Puiseux series in θμ. If the germ zi (μ) is a solution of the equa-
tion (8) then all terms of this Piueux series are equal to zero. In particular the leading
coefficient is zero. This observation is an important step for proofing Theorem 4.

4 Proof of Rosenlicht’s Theorem

Herewe complete an elementary proof of Theorem 4 discovered by Rosenlicht (1973).
We will proof first the simplier Theorems 27, 28 of a similar nature.

Theorem 27 Assume that the Eq. (2) over a functional differential field K has a solu-
tion z ∈ F where F is a generalized extension by integral of K . Then (2) has a solution
in the algebraic extension KP of K associated with the polynominal P.

Proof If the constant term of the differential polynomial T (u, u′, u′′, . . . ) = un −
Q(u, u′, u′′, . . . ) is equal to zero, then (2) has solution u ≡ 0 belonging to K . In this
case we have nothing to prove.

Below we will assume that the constant term T0 of T is not equal to zero. Thus the
differential polynomial T has two special terms: the term un which is the only term
of highest degree n and the term T0 which is the only term of smallest degree zero.

Assume that (2) has a solution z in a generalized extension by integral F ⊃ K 〈θ〉
of K . According to Sect. 3.4.3 the existence of such a solution z implies the existence
of family z(ρ) of germs of solutions depending on a parameter ρ such that when the
whose absolute value ρ| is big enough z(ρ) can be expanded in Puiseux series (9) in
θρ .

We will show that the degree k
p of the leading term in (9) is equal to zero and the

leading coefficient zi0 ∈ KP satisfies (2). This will proof Theorem 27.
According to Lemma 22 the leading term of the derivative of any order of zik has

degree ≤ k
p . Thus the leading term of Puiseux series obtained by plugging (9) instead

of u into differential polynomial Q has degree < n k
p . The leading term of the Puiseux

series obtained by arising (10 ) to the n-th power is equal to n k
p . If

k
p > 0 this term can
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not be canceled after plugging (9) instead of u into differential polynomial T . Thus
the degree k

p can not be positive.
Let us plug (9) into the differential polynomial T (u, u′, . . . )− T0. We will obtain a

Puiseux series of negative degree if k
p < 0. Thus the term T0 in the sum (T −T0)I +T0

can not be canceled. Thus k
p can not be negative.

We proved that k
p = 0. If in this case we plug (9) into the differential polynomial

T (u, u′, . . . ) we obtain a Puiseux series having only one term of nonnegative degree
which is equal to zero. From Lemma 22 it is easy to see that this term equals to
T (zi0 , z

′
i0
, . . . )θ0ρ . Thus zi0 ∈ KP is a solution of (2). Theorem 27 is proved. ��

Theorem 28 Assume that Eq. (2) over a functional differential field K has a solution
z ∈ F where F is a generalized extension by an exponential of integral of K . Then (2)
has a solution in the algebraic extension KP of K associated with the element z ∈ F.

Proof Theorem 28 can be proved exactly in the same way as Theorem 27. Just instead
of Lemma 22 one has to use Lemma 26. In the case when leading term of the Puiseux
expansion of zμ has degree zero, the leading coefficient of its derivative equals to z′i0
(see Lemma 26). That is why the case k

p = 0 in Theorem 28 can be treated exactly in
the same way as in Theorem 27. ��
Now we ready to prove Theorem 4.

Proof of Theorem 4 By assumption the Eq. (2) has a solution z ∈ F where F is an
extension of K by generalized quadratures. By Lemma 5 there is a chain K = F0 ⊂
· · · ⊂ Fm such that F ⊂ Fm and for every i = 0, . . . ,m−1 or Fi+1 is a finite extension
of Fi , or Fi+1 is a generalized extension by integral of Fi , or Fi+1 is a generalized
extension by exponential integral of Fi . We prove Theorem 4 by induction in the
length m of the chain of extension. For m = 1 Theorem 4 follows from Theorem 27,
or from Theorem 28. Assume that Theorem 4 is true for m = k. A chain F0 ⊂ F1 ⊂
· · · ⊂ Fk+1 provides the chain F1 ⊂ · · · ⊂ Fk+1 of extensions of length k for the field
F1. Thus (2) has an algebraic solution z over the field F1. The extension F0 ⊂ F̃1,
where F̃1 is the extension of F1 by the element z, is either an algebraic extension, or
extension by generalized integral or extension by generalized exponential of integral.
Thus for the extension F0 ⊂ F̃1 Theorem 4 holds. We completed the inductive proof
of Theorem 4. ��
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